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ABSTRACT PittUDT, a recursive partitioning decision tree algorithm for predicting
urine culture (UC) positivity based on macroscopic and microscopic urinalysis (UA) pa-
rameters, was developed in support of a broader system-wide diagnostic stewardship
initiative to increase appropriateness of UC testing. Reflex algorithm training utilized
results from 19,511 paired UA and UC cases (26.8% UC positive); the average patient
age was 57.4 years, and 70% of samples were from female patients. Receiver operating
characteristic (ROC) analysis identified urine white blood cells (WBCs), leukocyte esterase,
and bacteria as the best predictors of UC positivity, with areas under the ROC curve of
0.79, 0.78, and 0.77, respectively. Using the held-out test data set (9,773 cases; 26.3% UC
positive), the PittUDT algorithm met the prespecified target of a negative predictive
value above 90% and resulted in a 30 to 60% total negative proportion (true-negative
plus false-negative predictions). These data show that a supervised rule-based machine
learning algorithm trained on paired UA and UC data has adequate predictive ability for
triaging urine specimens by identifying low-risk urine specimens, which are unlikely to
grow pathogenic organisms, with a false-negative proportion under 5%. The decision
tree approach also generates human-readable rules that can be easily implemented
across multiple hospital sites and settings. Our work demonstrates how a data-driven
approach can be used to optimize UA parameters for predicting UC positivity in a reflex
protocol, with the intent of improving antimicrobial stewardship and UC utilization, a
potential avenue for cost savings.

KEYWORDS reflex protocol, machine learning, receiver operating characteristic,
PittUDT algorithm, urine culture

The diagnosis of urinary tract infections (UTIs) from history alone is challenging due
to the nonspecific signs and symptoms that can accompany these infections.

Various combinations of macroscopic and microscopic urinalysis (UA) parameters in
the setting of a clinical history and physical examination are used for making a pre-
sumptive diagnosis of UTI (1). When used in patient populations with undifferentiated
abdominal pain or even among uncomplicated patients with typical UTI symptoms,
the yield of routine urine cultures (UC) is quite low (2–4). Protocols which encourage
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more selective use of UC may improve antimicrobial stewardship and UC utilization, a
potential avenue for cost savings. Reflex testing refers to an algorithm which uses prelimi-
nary screening tests to inform decisions about the need for further tests. It has been
applied in many settings in laboratory medicine, including protein electrophoresis and
immunofixation, celiac disease serology, and thyroid function tests. Protocols for the
implementation of UA with automated reflex to UC have been investigated in several set-
tings, including in urology clinics, other outpatient settings, and in the emergency depart-
ment (ED) (5, 6). The most commonly used UA parameters are the presence of bacteria,
white blood cells (WBCs), nitrites, or leukocyte esterase. Jones et al. have shown that the
use of such a reflex protocol can reduce the number of UC performed in an ED setting by
up to 39% while missing only 11 of 314 positive UC (3.5%) (7).

Traditional algorithms for UC reflex protocols have relied on receiver operating char-
acteristic (ROC) curve analysis or multivariate (usually logistic) regression analysis using
variables which have been selected using an automatic stepwise process or based on
expert opinion and clinical judgment. The conventional approach of first performing uni-
variate analyses and including in the multivariable regression model only those variables
which meet a predetermined significance level is generally unsuitable for handling com-
plex or non-linear relationships between the predictors and response when they exist.
Decision tree algorithms provide an alternate data-driven approach for combining thresh-
olded features for predicting urine culture results from urinalysis parameters. Classification
and regression tree algorithms produce an output that is human readable and simple to
implement within the current laboratory information system infrastructure. These algo-
rithms also permit differential weighting of false positives and false negatives in order to
address class imbalances, i.e., where one class or category is underrepresented in the data
set. Differential weighting allows the development of a cost-sensitive algorithm that
stresses maximizing the negative predictive value (NPV), which is a primary consideration
for a screening technique.

In this study, we trained and validated a recursive partitioning decision tree algorithm
for predicting UC positivity based on macroscopic and microscopic UA features, in support
of a broader initiative to implement a strong electronic health record (EHR)-based diagnos-
tic stewardship intervention for urine infection testing (UIT) that aims to increase the
appropriateness of UC testing. The urine infection testing (UIT) committee focused on
maximizing the negative predictive value (NPV) of the UA-to-UC reflex protocol in order
for it to be an appropriate screening tool to reduce UC utilization while maintaining pre-
scriber trust. We also describe implementation of this UA reflex protocol under which UC
orders are canceled if an accompanying automated UA does not meet prespecified criteria
and the method for performance monitoring after protocol implementation.

MATERIALS ANDMETHODS
Setting and study population. A data set of results for UA and UC performed between 1 January 2017

and 31 December 2017 from adult patients ($18 years of age) in nonmaternity inpatient and outpatient
units at five hospitals of the UPMC (University of Pittsburgh Medical Center) academic health care system
was extracted from the electronic health record and laboratory information system (LIS). Only patients with a
UA and UC performed within 24 h of each other were included in this analysis. The protocols for algorithm
development and the urine infection testing program were ethically reviewed and approved by the
University of Pittsburgh’s Quality Improvement Committee (projects 1203 and 1722).

Characterization of laboratory procedures and electronic reporting. The UA and UC standard
operating procedures (SOPs) were reviewed for the 5 hospital sites to assess for differences in UA and
UC parameter reporting, as well as differences in how the urinalysis WAM (Sysmex, Lincolnshire, IL) mid-
dleware rules transformed raw counts into binned ordinal values at each site. For the 5 hospital sites,
the LIS Sunquest (Sunquest, Tucson, AZ) was queried to determine all order codes used for UA and UC,
the names of all urinalysis-associated specimen types, and the LIS test result codes (value identifiers
[IDs]) for each of the UA parameters.

Microbiologic methods. All sites performed the microscopic UA using the Sysmex UF-1000i (Sysmex,
Lincolnshire, IL), which performs identification and quantification via flow cytometry, and performed the
macroscopic UA using the Clinitek Atlas or Clinitek Novus (Clinitek, Ramsey, MN), and manual microscopy
was performed when indicated according to each laboratory’s SOPs. UC were performed in each hospital’s
microbiology laboratory using standard methodologies. The UA parameters that were studied included pres-
ence of WBCs, bacteria, red blood cells (RBCs), leukocyte esterase, nitrate, specific gravity, pH, character, pro-
tein, and blood. UC was considered positive if at least 10,000 CFU/mL of one or more likely urinary
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pathogens was present, including Gram-negative rods, Enterococcus spp., Staphylococcus saprophyticus,
Staphylococcus aureus, group B streptococci, and Aerococcus. Urine contaminants, referred to as “mixed skin
flora,” were considered culture negative; these included Streptococcus viridans group, coagulase-negative
staphylococci, diphtheroids, Lactobacillus, Gardnerella vaginalis, Micrococcus, and Bacillus species. If at least
10,000 CFU/mL of one or more likely urinary pathogens was cultured in the presence of other organisms in-
dicative of “mixed skin flora,” then the specimen was considered culture positive.

Data cleansing prior to algorithm development. To generate algorithm rules using the historic
data from the 5 sites, the data underwent cleansing to create a single unified data set with values that
were comparable across sites. Evaluation of the SOPs, middleware rules, urinalysis-associated specimen
types, UA- and UC-related test codes, and the LIS test result codes (value IDs) for each of the UA/UC pa-
rameters revealed differences across sites which needed to be comprehensively evaluated, documented,
and accounted for before algorithm development. To classify the location type of the patient when the
UA/UC was performed, approximate location codes for the 5 hospitals were identified, reviewed, and di-
vided into location categories (Table 1); maternity-specific locations were excluded. All LIS test result
codes were identified to retrieve results for all analytes in the UA and UC (for most analytes that make
up the UA, each site had its own individual analyte code). Approximately 14 UA and 5 UC test order
codes were identified among the 5 sites. Thirty-five values for specimen types were identified and man-
ually reviewed and condensed into the categories represented in the data (Table 1) following data
cleansing (e.g., identification of duplicate specimen types with nonmeaningful differences due to the
lack of uniform naming practices of each site such as “urine” and “urn” and free text values that did not
contribute meaningful additional information such as “scath” free-texted as “urine scath”).

Although all sites were using the Sysmex UF-1000i and the Clinitek Atlas or Novus, evaluation of the
middleware rules for each site revealed differences in the way raw values were being binned into ordinal
values. Using the middleware rules, the range of values for each bin of UA results was identified to es-
tablish comparable values between sites. Values for the UA parameters were also condensed into groups
sharing an equivalent result where different reporting terms were used (e.g., leukocyte esterase “nega-
tive, trace, small, moderate, large” and “negative, trace, P1, P2, P3”). In all cases, the numerical values
underlying the ordinal bin names were reviewed to ensure that the same values were being appropri-
ately categorized together. This data cleansing and compiling process was repeated for each analyte for
all UA and UC results.

Reflex algorithm derivation. A three-step algorithm was created: macroscopic UA to microscopic
UA to UC. The first decision tree (macroscopic-to-microscopic-UA reflex) was trained using parameters
obtained from the macroscopic UA: leukocyte esterase, nitrate, specific gravity, pH, character, protein,
and blood. All observations that were classified as high risk by the first decision tree were then used to
train or validate the second decision tree (microscopic-UA-to-UC reflex), which included parameters
obtained from the microscopic UA: WBCs, bacteria, and RBCs. Age, gender, hospital location, and speci-
men type were not used as predictors since they may not be consistently captured in LIS at all sites in
the health care system at the time of specimen collection.

ROC analysis. Receiver operating characteristic (ROC) curves were plotted to compare the accura-
cies of macroscopic and microscopic UA parameters for predicting positive UC results.

Recursive partitioning algorithm. The “rpart” (8) recursive partitioning algorithm was implemented
using “caret” (9) in R version 3.4.2 (Comprehensive R Archive Network) (10) and has been extensively
described previously (11). Briefly, the decision tree was built by first finding the single variable which
best separated the data into two subgroups known as daughter nodes; after the data were separated,
this process was repeated on each subgroup until the subgroups reached a minimum size or until there
could be no further improvement. At each node or decision point, sample partitioning was based on the
predictor variable which maximized the goodness-of-split, i.e., in which created subgroups were more
homogenous or “purer” than the data in the original parent group. Variable importance ranking was
based on the Gini index, a measure of node impurity that favors larger partitions compared with other
split criteria. Tenfold cross-validation was used to give an internal estimate of misclassification by the de-
cision tree and to avoid overfitting. Balanced accuracy was used as the training metric. The decision tree
was pruned, i.e., potentially unnecessary nodes and branches were removed, by specifying the complex-
ity parameter at which the balanced accuracy was highest.

Data from 1 January 2017 to 30 September 2017 were used to train and test the decision tree; the
original data were randomly divided into training and test data sets in a 2:1 ratio. The decision trees
were trained using the training data set, and then the performance of the optimized decision trees was
subsequently determined using the test data set. An annotated script of the learning pipeline that can
be used for training similar decision trees using a laboratory’s local data is provided in the supplemental
material.

Performance targets. The performance targets were established a priori based on findings from a sin-
gle-institution study of 791 consecutive urine samples submitted for aerobic culture at a tertiary care cen-
ter; in this study, the urine culture positivity rate (.105 CFU/mL) was 12.9%, and urine bacteria and WBC
demonstrated a negative predictive value (NPV) above 97% with a potential reduction in unnecessary
urine cultures by up to 55% (12). Since the NPV is inversely proportional to the prevalence of positive urine
cultures, a more liberal NPV threshold of 90% was applied to account for the urine culture positivity rate of
approximately 25 to 30% at the five hospitals included in this study; by similar logic, a total negative pro-
portion (TNP; percent true negatives plus false negatives as a proportion of all cases) between 30 and 60%
was considered acceptable based on an estimated 40 to 50% reduction with 10% tolerance either side, as
long as the false-negative proportion (FNP) was below 5% for each site.
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Training of decision trees. For the macroscopic-to-microscopic-UA reflex, the training data set com-
prised 19,511 unique paired UA and UC results with complete data for all predictor variables. Hyperparameter
tuning was performed to meet the prespecified performance targets: the minimum node size before a split
could be attempted was set as 500 observations, and the minimum bucket size for daughter nodes was set as
250 observations; a false negative was also weighted eight times higher than a false positive in order to opti-
mize the negative predictive value. Repeated 10-fold cross-validation with 10 repeats was used to reduce
overfitting.

For the microscopic-UA-to-UC reflex, a separate decision tree was trained using the 11,136 observa-
tions from the original training data set above that were predicted as being high risk or positive. The
minimum node size before a split could be attempted was set as 500 observations, and the minimum
bucket size for daughter nodes was set as 250 observations. A false negative was weighted eight times
higher than a false positive in order to optimize the negative predictive value. Repeated 10-fold cross-
validation with 10 repeats was used to reduce overfitting.

The two decision trees were then combined into a stepwise UA decision tree algorithm called
PittUDT (macroscopic UA to microscopic UA to UC).

Performance evaluation using test data set. The test data set comprised 9,773 unique paired UA
and UC results with complete data for all predictor variables. The PittUDT algorithm was applied in a
stepwise fashion for classification of observations based on their macroscopic UA and/or microscopic
UA results.

A true positive means that the algorithm correctly predicted that the UC was positive, and a true
negative means that the algorithm correctly predicted that the UC was negative. A false-positive predic-
tion indicates that the model predicted that the UC was positive when in fact it was negative. A false-
negative prediction means that the model predicted that the UC was negative when in fact it was
positive.

Sensitivity (recall), specificity, positive predictive value (precision; PPV), and NPV were calculated as
previously described (13). Naive accuracy (NA) was calculated as the proportion of all cases that were
correctly classified. Balanced accuracy (BA) was calculated as the average of the proportions of each indi-
vidual class that were correctly classified (i.e., the average of the sensitivity and specificity). The 95% con-
fidence intervals (CI) for test performance metrics were calculated using the exact binomial method.

Standardization of laboratory procedures and electronic reporting and deployment of the
reflex protocol. Implementation of the reflex protocol required standardization of UA reporting at the 5
hospital sites, standardization of the middleware rules, generation of LIS rules using the decision tree
algorithm, and development of a monthly quality control (QC) program for performance monitoring. To
address inconsistent practices among laboratories and to simplify ongoing evaluation, monitoring, and
maintenance of the reflex testing procedure, a single SOP was created with a prescribed set of LIS and
middleware rules to be enacted prior to implementation of the reflex testing algorithm for clinical use.
The SOP was also developed to simplify the process of adopting the algorithm at additional sites in the
future. The harmonization process was conducted between January 2018 and December 2020.

Prior to phased implementation of the reflex protocol, rules were developed for the physician order
entry module of the hospital information system. Persons ordering UA with reflex to culture were
required to designate by means of check boxes that the patient was not pregnant, not immunosup-
pressed, and not undergoing urologic surgery or that the specimen did not come from outside the blad-
der (e.g., nephrostomy). These samples were cultured regardless of the UA results. Reflex was not used
when a UA independent of culture was ordered for noninfectious reasons. A mechanism was included
to permit physicians to request culture of samples which did not meet the UA criteria. Also, a mecha-
nism was created to permit culture independent of UA results for specimens collected in the operating
room (OR), the only location where this is permitted. Deployment of the urine infection testing algo-
rithm across the 5 sites began in January 2021 and ended in September 2022.

QC simulation. Data from all samples tested between 1 October 2017 and 31 December 2017 were
used to simulate implementation of the validated algorithm at all five sites. A site-specific acceptance
sampling plan was developed using a two-stage hypergeometric sampling plan; a web-based calculator
for both one-stage and two-stage acceptance sampling plans can be found at https://jnsanalytics
.shinyapps.io/ua_reflex_qc_sample_size_calculator (14, 15). The estimated number of urine samples
tested during a given 4-week quality control (QC) period per site was calculated based on the average
test volume per month at each site in the training data. The tolerance limit for the QC false-negative pro-
portion was set at 20%. In the first stage of the sampling plan, up to four QC false-negative results (m =
4) were permitted per QC period at each site. If no more than four QC false-negative results were
observed among the first-stage QC samples (n1) in a 4-week period at a given site, the process was con-
sidered to be in control, and no further QC testing was required during that period. For logistic reasons,
the n1 QC samples were divided evenly among the 4 weeks in each QC period and QC samples were
chosen at random from the samples submitted for testing in that week. If there were more than 4 QC
false-negative results in the initial QC sample, a second QC sample (n2) was submitted for testing in that
QC period. Conformance was demonstrated if no more than one additional process failure was observed
in the second sample. If more than one additional process failure was observed, then QC testing failed
for that month and required further investigation into algorithm performance and consideration of
expanding the QC sample size to encompass all collected specimens in the upcoming month. The total
negative proportion and overall false-negative proportion for all samples at each site were also moni-
tored during the simulation. The tolerance limits for the total negative rate were 30% to 60%. The QC
program was simulated 1,000 times, each time drawing a random sample of observations or cases from
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the QC data period; the proportion of simulations for each site with QC testing failures was determined
to evaluate the robustness of the proposed QC program.

Local site verification during phased deployment. Due to the interval between algorithm develop-
ment and deployment, local site verification to ensure proper functioning of the algorithm at each site was
conducted incrementally as the urine infection testing implementation was deployed in a phased manner.
An acceptance sampling plan similar to the one described above for QC simulation was designed for local
site verification to ensure an acceptably low false-negative proportion. A total of three randomly selected
patient specimens predicted by the PittUDT urine infection testing algorithm as low risk, due to either nega-
tive macroscopic or negative microscopic analysis described above under “microbiologic methods,”were cul-
tured per day. The following guidelines were used to verify local site performance for deployment.

1. Urine specimens were inoculated onto blood, MacConkey, and CNA (colistin and nalidixic acid)
agars and incubated in ambient air at 35°C.

2. Cultures were reviewed for clinically significant growth at 24 and 48 hours, postincubation.

a. Clinically significant growth includes.10,000 CFU/mL of the following organisms:

I. Any Gram-negative rod
II. Beta-hemolytic Streptococcus species
III. Enterococcus species
IV. Staphylococcus aureus
V. Yeast or other fungi

b. Any organism considered a skin contaminant (alpha-hemolytic Streptococcus, Lactobacillus,
or diphtheroids) was considered a negative culture.

c. Any culture demonstrating clinically significant growth was reviewed by the Infectious
Disease team, to determine if it represented a true failure of the urine infection testing
process.

3. For the first deployment site, a total of 400 verification specimens were evaluated. If fewer than
7.5% of specimens were culture positive (i.e., false negative), then site verification was
considered to have passed. The 7.5% threshold was based on a one-sided one-sample test of
proportions to ensure that the NPV was.90%, using an alpha of 0.05 (Stata v17).

4. For the remaining four deployment sites, verification testing was performed for an initial period
of 20 consecutive days.

d. If after 20 days of consecutive testing (;60 specimens), the laboratory identified 0 or 1
positive culture with a likely urinary pathogen, site verification was considered to have
passed.

e. If, during the 20-day window, more than 1 culture grew a significant organism, testing
was continued for an additional 20 days (;60 additional specimens).

f. If, during the second 20-day window, 0, 1, or 2 additional cultures grew a significant
organism, verification was considered to have passed.

g. If, during the second 20-day window, more than 2 cultures grew a significant organism,
additional testing and local troubleshooting would be performed under the supervision
of the Infectious Disease team and laboratory medical director.

RESULTS
Reflex algorithm derivation. This derivation of the reflex algorithm included 38,361

paired UA and UC cases (Fig. 1); the average patient age was 57.4 years, and 70% of sam-
ples were from female patients (Table 1). The majority of specimens originated in the ED
(39.2%), outpatient units (30.3%), and inpatient units (25.2%), and more than 98% of speci-
mens were either clean catch (92.5%) or Foley catheter (6.1%) specimens. The difference
in sample collection time between the UA and UC specimens was within 5.3 h for 95% of
samples. Summary data for results of macroscopic and microscopic UA for all cases are
provided in the supplemental material (Tables S1 and S2).

The training data set comprised 19,511 cases, of which 5,223 (26.8%) had a positive
UC result. ROC analysis using the training data identified urine WBCs, leukocyte ester-
ase, and bacteria as the best discriminators of UC positivity, with areas under the ROC
curve (AUCs) of 0.79, 0.78, and 0.77, respectively; the worst discriminators of UC positiv-
ity were specific gravity and pH, with AUCs of 0.48 and 0.51, respectively (Fig. 2). The
optimized recursive partitioning decision tree is presented in Fig. 3; the reflex algo-
rithm included use of leukocyte esterase and nitrate for predicting whether micro-
scopic UA should be performed and then, use of WBC and bacteria for predicting UC
positivity.

The test data comprised 9,773 cases, of which 2,571 (26.3%) had a positive UC
result. Using the held-out test data set, the PittUDT algorithm met the prespecified tar-
gets of a 30 to 60% total negative proportion (true-negative plus false-negative
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predictions) with a negative predictive value above 90% and an FNP below 5%.
Algorithm performance in the test data set after stratification by age (,60 years versus
$60 years), gender, and specimen type is shown in Table 2 and Table S3, and perform-
ance of the algorithm in the different hospitals and settings (inpatient, outpatient,
emergency department, and intensive care unit) is shown in Table 3 and Table S4. The
NPV for samples collected from women and ED patients marginally failed to meet the
90% prespecified target, and this was associated with a higher prevalence of positive
urine cultures in these two patient groups: 29.3% positive cultures in women com-
pared with 19.4% in men (P , 0.001) and 35.9% positive cultures from ED compared
with 20.3% positive cultures collected from other sites (P , 0.001). There was no signif-
icant difference in the NPV (91.2% versus 91.4%, P = 0.8779), total negative proportion
(53.8% versus 51.8%, P = 0.07251), or false-negative proportion (4.7% versus 4.4%,
P = 0.5996) between paired UA/UC samples collected concurrently (at the same time)
and those collected nonconcurrently (Table S5).

QC program simulation. Data from all cases with complete data tested between 1
October 2017 and 31 December 2017 were used to simulate implementation of the

FIG 1 Data flow diagram showing derivation of the training, test, and quality control (QC) simulation data sets.

FIG 2 Receiver operating characteristic curves for prediction of urine culture positivity using macroscopic urinalysis parameters (A) and microscopic
urinalysis parameters (B). The area under the receiver operating characteristic curve was highest for white blood cells, leukocyte esterase, and bacteria.
CHAR, character; LE, leukocyte esterase; NIT, nitrate; PROT, protein; SPGR, specific gravity; BACT, bacteria; RBC, red blood cells; WBC, white blood cells.
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validated algorithm at all five sites (n = 9,077 cases, of which 2,408, or 26.5%, were UC
positive). The results on one simulated quality control (QC) run demonstrating four or
fewer QC failures/month across all sites are provided in the supplemental materials
(Fig. S1); the actual FNP for each period is also presented. When the QC program was
simulated 1,000 times with random QC sampling, the QC testing failure rate was high-
est for sites with the highest actual FNP for that period (1.5% of simulations for site 1,
4.1% of simulations for site 2, 9.4% of simulations for site 3, 4.5% of simulations for site
4, and 0.4% of simulations for site 5).

Local site verification during phased deployment in real-world use. The per-
formance of the PittUDT urine infection testing algorithm across the 5 hospital sites
was examined. A total of 594 randomly selected specimens, which were classified by
the algorithm as low risk with the UC not indicated, were cultured. Of these, 589 of the
specimens had a negative culture result. Across the 5 hospital sites, the concordance

FIG 3 PittUDT algorithm decision tree for prediction of urine culture results using urinalysis parameters.
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of the PittUDT UA results predicted as low risk (i.e. negative predicted UC result) with
the actual UC results ranged from 98.4% to 100% (Table 4).

DISCUSSION

The implementation of a multisite conditional UA-reflex-to-UC protocol has the
capacity to significantly decrease the number of unnecessary UC which are performed. UA
parameters and thresholds used for reflex UC protocols vary widely and have historically
been determined based on expert opinion or univariate ROC analysis (12). Our study dem-
onstrates the feasibility and performance of using a supervised machine learning (ML)
approach to develop a human-interpretable machine learning model to optimize UA pa-
rameters in a reflex protocol that can be deployed across multiple hospital sites and set-
tings within a large academic health care system. Our study also underscores the necessity
for a stringent SOP review and robust data cleansing process performed by individuals
with a granular understanding of the laboratory processes, middleware rules, and LIS rules,
even when the laboratory results are generated at individual laboratories using the same
instruments within one health system. Our study shows that a rule-based algorithm
trained on UA/UC data has adequate predictive ability for triaging urine specimens by
identifying those which are low risk and are unlikely to grow pathogenic organisms, with a
false-negative proportion under 5%.

The PittUDT algorithm had similar performance across age, sex, health care setting
(inpatient, outpatient, emergency department, and intensive care unit), and specimen
type (clean catch, straight catheter, and Foley catheter) strata. The NPV for samples col-
lected from women and ED patients marginally failed to meet the 90% prespecified
target, which is likely attributable to the higher prevalence of positive urine cultures in
these two patient groups. It is important to note that almost two-thirds of specimens
included in algorithm training and evaluation were collected from an acute care set-
ting (ED or inpatient), which may not be reflective of other institutions considering
adoption of a similar reflex algorithm. However, one strength of our approach is that
the same rules were shown to generalize across health care settings, albeit with the
best performance observed in specimens collected in the outpatient setting. The sub-
optimal performance of the reflex algorithm with nephrostomy specimens may be due
to the small sample size in the training and test data sets for this specimen source.
However, it is also possible that UA is not an appropriate method of screening urine
specimens obtained via suprapubic catheters and loop ileostomies or nephrostomies
as patients with indwelling or suprapubic catheters and nephrostomy tubes invariably
become carriers of asymptomatic bacteriuria, in which case antibiotic treatment does
not have a benefit (16, 17). This highlights an important limitation of any UA-reflex-to-
UC protocol, in that it does not prevent testing of asymptomatic bacteriuria. In contrast
to other studies on the use of artificial intelligence/machine learning (AI/ML) strategies
for reducing unnecessary UC which specifically included special subpopulations of
pregnant patients and children, our algorithm is not meant to be applied to these

TABLE 2 Summary of test data set decision tree performance by patient demographics and specimen source

Performance metrica

Demographic feature and specimen source

Overall Male Female Age<60 yr Age ‡60 yr Clean catch Foley catheter
n 9,773 2,961 6,812 4,784 4,989 9,043 592
Requires micro UA, n (%) 5,673 (58) 1,383 (46.7) 4,290 (63) 2,486 (52) 3,187 (63.9) 5,191 (57.4) 389 (65.7)
Requires UC, n (%) 4,579 (46.9) 1,101 (37.2) 3,478 (51.1) 2,023 (42.3) 2,556 (51.2) 4,158 (46) 336 (56.8)
TNP, % 53.1 62.8 48.9 57.7 48.8 54.0 43.2
Sensitivity, % (95% CI) 82.4 (80.9–83.9) 84.6 (81.4–87.5) 81.8 (80–83.5) 77 (74.3–79.6) 85.8 (83.9–87.4) 81.9 (80.2–83.4) 86.9 (80.6–91.7)
Specificity, % (95% CI) 65.8 (64.7–66.9) 74.2 (72.4–75.9) 61.7 (60.3–63.1) 66.7 (65.2–68.2) 64.9 (63.2–66.5) 66.6 (65.5–67.7) 54.4 (49.6–59.2)
PPV, % (95% CI) 46.3 (44.8–47.7) 44.1 (41.1–47) 47 (45.3–48.7) 37.5 (35.4–39.6) 53.2 (51.3–55.2) 46.2 (44.7–47.8) 41.4 (36.1–46.8)
NPV, % (95% CI) 91.3 (90.5–92.1) 95.3 (94.2–96.2) 89.1 (88–90.1) 91.8 (90.7–92.8) 90.7 (89.5–91.8) 91.3 (90.5–92.1) 91.8 (87.7–94.9)
BA, % (95% CI) 74.1 (73.2–75.1) 79.4 (77.7–81.2) 71.7 (70.6–72.9) 71.9 (70.3–73.4) 75.3 (74.1–76.5) 74.2 (73.3–75.2) 70.6 (67–74.3)
aBA, balanced accuracy; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value; TNP, total predicted negative proportion; micro UA,
microscopic urinalysis; UC, urine culture.
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special groups (18). There was no uniform reliable mechanism to identify pregnant
patients in the LIS, and although maternity-specific locations were excluded, it is
unknown which patients in the data set may have been pregnant. Furthermore, the
guidance on these special groups is different from that for the general adult popula-
tion. For example, the U.S. Preventive Services Task Force recommends screening preg-
nant patients for asymptomatic bacteriuria but not nonpregnant adults (19).

Other studies have developed ML algorithms for specific subpopulations or health
care location settings. Taylor et al. applied supervised ML algorithms to predict UTIs in
symptomatic patients in the ED, and Burton et al. applied supervised ML algorithms to
predict UTIs in both inpatient and outpatient settings with laboratory testing per-
formed in a single clinical microbiology laboratory covering three hospitals and com-
munity services (18, 20). In contrast, we developed and deployed an ML algorithm
which has broad application (inpatient, outpatient, emergency department, and inten-
sive care unit) and demonstrated that strong clinical performance can be achieved
using results from multiple laboratories by employing comprehensive preprocessing
steps and domain expertise in understanding what types of laboratory data are truly
equivalent and can be combined.

The PittUDT algorithm was created using recursive partitioning to create a human-
readable decision tree by an expert group of laboratorians in conjunction with the
Health System Infection Control Committee (Fig. 3). This domain expertise was used to
determine appropriate weights for false negatives and positives and to determine
which metrics should be prioritized (e.g., negative predictive value). Our experience
developing this algorithm underscores the importance of the laboratory director’s role
in ensuring data integrity and equivalency in all of the nuanced decisions that form a
foundational part of any ML algorithm implementation.

One concern when implementing a supervised learning algorithm is the ability to
monitor for and detect shifts or drifts in algorithm performance over time because of
changes in the input data distribution due to, for example, changes in the patient pop-
ulation served or changes in the laboratory methodology, reagents, or instrumentation.
This study demonstrates how retrospective data can be used to derive an appropriate ac-
ceptance sampling plan based on the hypergeometric distribution that can be applied for
ongoing performance monitoring (or quality control) of this and similar algorithms after
deployment. Based on the stability of the simulated QC process using 3 months of retro-
spective data, the UIT team decided to perform performance monitoring on a biannual ba-
sis by culturing three low-risk samples per day based on UA results for seven consecutive
days. The UIT program is being deployed at additional hospitals in this large multihospital
health system, and a detailed review of the quality control program during real-world use
will be conducted as more data are generated.

The major limitation of the decision tree algorithm used in this study compared
with other supervised learning algorithms is its potential for overfitting due to the
high dependence of the algorithm on the training data set that is used in its develop-
ment. In fact, ensemble methods, such as random forests and gradient boosting, which
build many individual trees and then predict based on the consensus of all those trees,
are typically preferred since they have a lower risk of overfitting (i.e., lower variance);

TABLE 4 Local site verification summary by hospital

Facility

Date of reflex
implementation
(mo/day/yr)

No. of quality
control samples

No. of negative
cultures on quality
control %

Hospital 3 01/11/2021 400 397 99.3%
Hospital 1 05/10/2021 113 112 99.1%
Hospitals 2 and 4 09/26/2022 60 59 98.4%
Hospital 5 09/26/2022 21 21 100%

Total 594 589 99.2%
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however, the output from these ensemble methods cannot be easily interpreted by
clinicians and laboratory personnel, requiring algorithm orchestration capabilities to
be implemented in the LIS or electronic health record (EHR). In this study, minimum
parent and daughter node sizes were specified to minimize the overall tree depth, and
10-fold cross-validation was used in order to reduce the risk of overfitting by the deci-
sion tree algorithm. In fact, the local site verification data demonstrated that the UIT
algorithm continued to meet the prespecified performance target for NPV at the five
deployment sites several years after model development and initial evaluation. Other
groups have evaluated other, more complex ML methods for creating an algorithm for
identifying low-risk UA specimens, which are opaque to the end user. Taylor et al.
developed six ML models and concluded that of the ML models they evaluated, the
XGBoost algorithm had the best performance (20). In contrast, Burton et al. found that
when applied to their cohort, the sensitivity of the XGBoost algorithm was poor
(61.7%), and they hypothesized that the difference in performance (sensitivity) could
be a consequence of the application of different class weights, as Burton et al. applied
class weights that favored high sensitivity (desirable in a screening test) and Taylor
et al. did not indicate if weighted classes were used (18).

The development of ML algorithms for use in the clinical setting and the evaluation
of their performance cannot be relegated to data scientists working in isolation; it
requires clinical expertise and domain knowledge to understand whether appropriate
decisions are made in both the selection and implementation of a particular model
(e.g., appropriate population selection, equivalence or nonequivalence of laboratory
data, understanding the cost of a false-negative or -positive test, and appropriate tun-
ing such as class weighting). Furthermore, unlike other studies where all clinical testing
was performed at a single laboratory, the macroscopic and microscopic UA and micro-
biology testing in our study were performed at multiple laboratory sites, both in the
community hospital and in large academic hospital settings. Our study also reveals a
cautionary tale for those seeking to exclude laboratorians from these processes and
simply aggregate laboratory data generated across multiple sites within a health care
system or between health care systems based on the assumption that data generated
for the same test, even when performed on the same instrument, should be equiva-
lent. The preprocessing steps and evaluation of the SOPs, middleware, and LIS rules
were all integral to developing a sound data set prior to algorithm development.

While the PittUDT algorithm can be fine-tuned for differences in the hospitals, loca-
tions within a hospital, and sex, the goal of this study was to create a universal algo-
rithm for all sites utilizing the Sysmex UF-1000i (Sysmex, Lincolnshire, IL) and Clinitek
Atlas or Clinitek Novus (Clinitek, Ramsey, MN) urinalysis instruments. As documented
in the literature, urine WBCs and bacteria were among the best predictors of positive
UC (12, 21). These two parameters are derived from the automated microscopic analy-
sis, which has high reproducibility and accuracy especially when performed by flow
cytometry (21). Urine leukocyte esterase, which is a semiquantitative measure of the
number of WBCs, was also a good predictor of UC positivity. A universal algorithm
based on data-driven parameters with acceptable performance across a diversity of
patients is a formidable but attainable achievement which facilitates more rapid imple-
mentation and change control in a multisite health care system.
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